Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Heliyon ; 10(7): e27993, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560108

ABSTRACT

Objective: To establish a Bama minipigs model with Non-Alcoholic Fatty Liver (NAFL) induced by a high-fat diet and investigate the application of attenuation coefficient (ATT) and ultrasound-derived fat fraction (UDFF) in the diagnosis of NAFL. Methods: Six-month-old male Bama minipigs were randomly divided into normal control and high-fat groups (n = 3 pigs per group), and fed with a control diet and high-fat diet for 32 weeks. Weight and body length were measured every four weeks, followed by quantitative ultrasound imaging (ATT and UDFF), blood biochemical markers, and liver biopsies on the same day. Using the Non-Alcoholic Fatty Liver Disease (NAFLD) Activity Score (NAS) as a reference, we analyzed the correlation between ATT, UDFF, and their score results. Results: Compared with the normal control group, the body weight, body mass index (BMI), and serum levels of triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) in the High-fat group were significantly different at Week 12 (P < 0.05). Spearman correlation analysis showed that the ATT value was significantly correlated with NAS score (r = 0.76, P < 0.001), and the UDFF value was significantly correlated with NAS score (r = 0.80, P < 0.001). The optimal cut-off value of ATT and UDFF were 0.59 dB/cm/MHz and 5.5%, respectively. These values are optimal for diagnosis of NAFL in Bama minipig model. Conclusion: ATT and UDFF have a high correlation with steatosis, and can be used as a non-invasive method for early screening of hepatic steatosis, which can dynamically monitor the change of disease course.

2.
Ecol Evol ; 14(4): e11279, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38633519

ABSTRACT

Wolbachia, one of the most ubiquitous heritable symbionts in lepidopteran insects, can cause mitochondrial introgression in related host species. We recently found mito-nuclear discordance in the Lepidopteran tribe Tagiadini Mabille 1878 from which Wolbachia has not been reported. In this study, we found that 13 of the 46 species of Tagiadini species tested were positive for Wolbachia. Overall, 14% (15/110) of Tagiadini specimens were infected with Wolbachia and nine new STs were found from 15 isolates. A co-phylogenetic comparison, divergence time estimation and Wolbachia recombination analysis revealed that mito-nuclear discordance in Tagiadini species is not mediated by Wolbachia, but Wolbachia acquisition in Tagiadini appears to have occurred mainly through horizontal transmission rather than codivergence.

3.
Plant Biotechnol J ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526838

ABSTRACT

Inter-subspecific indica-japonica hybrid rice (Oryza sativa) has the potential for increased yields over traditional indica intra-subspecies hybrid rice, but limited yield of F1 hybrid seed production (FHSP) hinders the development of indica-japonica hybrid rice breeding. Diurnal flower-opening time (DFOT) divergence between indica and japonica rice has been a major contributing factor to this issue, but few DFOT genes have been cloned. Here, we found that manipulating the expression of jasmonate (JA) pathway genes can effectively modulate DFOT to improve the yield of FHSP in rice. Treating japonica cultivar Zhonghua 11 (ZH11) with methyl jasmonate (MeJA) substantially advanced DFOT. Furthermore, overexpressing the JA biosynthesis gene OPDA REDUCTASE 7 (OsOPR7) and knocking out the JA inactivation gene CHILLING TOLERANCE 1 (OsHAN1) in ZH11 advanced DFOT by 1- and 2-h respectively; and knockout of the JA signal suppressor genes JASMONATE ZIM-DOMAIN PROTEIN 7 (OsJAZ7) and OsJAZ9 resulted in 50-min and 1.5-h earlier DFOT respectively. The yields of FHSP using japonica male-sterile lines GAZS with manipulated JA pathway genes were significantly higher than that of GAZS wildtype. Transcriptome analysis, cytological observations, measurements of elastic modulus and determination of cell wall components indicated that the JA pathway could affect the loosening of the lodicule cell walls by regulating their composition through controlling sugar metabolism, which in turn influences DFOT. This research has vital implications for breeding japonica rice cultivars with early DFOT to facilitate indica-japonica hybrid rice breeding.

4.
Plant Cell Environ ; 47(6): 1997-2010, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38379450

ABSTRACT

Gummy stem blight (GSB), a widespread disease causing great loss to cucurbit production, has become a major threat to melon cultivation. However, the melon-GSB interaction remains largely unknown. Here, full-length transcriptome and widely targeted metabolome were used to investigate the defence responses of resistant (PI511089) and susceptible (Payzawat) melon accessions to GSB pathogen infection at 24 h. The biosynthesis of secondary metabolites and MAPK signalling pathway were specifically enriched for differentially expressed genes in PI511890, while carbohydrate metabolism and amino acid metabolism were specifically enriched in Payzawat. More than 1000 novel genes were identified and MAPK signalling pathway was specifically enriched for them in PI511890. There were 11 793 alternative splicing events involving in the defence response to GSB. Totally, 910 metabolites were identified in Payzawat and PI511890, and flavonoids were the dominant metabolites. Integrated full-length transcriptome and metabolome analysis showed eriodictyol and oxalic acid were the potential marker metabolites for GSB resistance in melon. Moreover, posttranscription regulation was widely involved in the defence response of melon to GSB pathogen infection. These results not only improve our understanding on the interaction between melon and GSB, but also facilitate the genetic improvement of melon with GSB resistance.


Subject(s)
Cucurbitaceae , Disease Resistance , Gene Expression Regulation, Plant , Metabolome , Plant Diseases , Transcriptome , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Cucurbitaceae/microbiology , Cucurbitaceae/genetics , Cucurbitaceae/metabolism , Gene Expression Profiling
5.
Discov Oncol ; 14(1): 233, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110764

ABSTRACT

BACKGROUND: Celastrol has been revealed to exhibit anticancer pharmacological activity, however, the molecular mechanisms of celastrol involved in pancreatic cancer remain to be further elucidated. The present study was to illustrate whether celastrol suppresses pancreatic cancer through modulating RNA m6A modification. METHODS: Effect of celastrol treatment on the malignant phenotypes of pancreatic cancer cells was evaluated by CCK-8 assay, EdU assay, colony formation assay, flow cytometry analysis and subcutaneous xenograft experiments. RNA sequencing (RNA-seq) analysis was carried out to analyze the genes differentially expressed in celastrol-treated pancreatic cancer cells. RT-qPCR, Western blotting and immunohistochemistry were employed to evaluate the expression of the indicated genes. RNA dot blot and quantification of total RNA m6A modification assays, MeRIP-qPCR assay, RIP-qPCR assay, RNA stability and protein stability assays were applied to evaluate the regulatory mechanism of celastrol treatment in pancreatic cancer cells. RESULTS: We demonstrated that celastrol suppressed cell proliferation and induced cell cycle arrest and apoptosis of pancreatic cancer cells in vitro, and decreased tumor growth in vivo. Specifically, Bcl-2, Claspin, METTL3 and YTHDF3 were identified as the potential targets of celastrol treatment in pancreatic cancer cells. Moreover, our results indicated that celastrol treatment downregulated METTL3 and decreased m6A levels of Claspin and Bcl-2 mRNA, leading to the degradation of Claspin and Bcl-2 mRNA in pancreatic cancer cells. Furthermore, we revealed that celastrol treatment downregulated Claspin and Bcl-2, at least in part, in an m6A-YTHDF3-mediated manner in pancreatic cancer cells. CONCLUSION: Our study highlighted a novel mechanism underlying celastrol-induced cellular proliferation inhibition and apoptosis in pancreatic cancer cells via m6A-YTHDF3-mediated downregulation of Claspin and Bcl-2.

6.
Front Immunol ; 14: 1202150, 2023.
Article in English | MEDLINE | ID: mdl-37646041

ABSTRACT

Background: Interferon-gamma (IFN-γ), commonly referred to as type II interferon, is a crucial cytokine that coordinates the tumor immune process and has received considerable attention in tumor immunotherapy research. Previous studies have discussed the role and mechanisms associated with IFN-γ in specific tumors or diseases, but the relevant role of IFN-γ in pan-cancer remains uncertain. Methods: TCGA and GTEx RNA expression data and clinical data were downloaded. Additionally, we analyzed the role of IFN-γ on tumors by using a bioinformatic approach, which included the analysis of the correlation between IFN-γ in different tumors and expression, prognosis, functional status, TMB, MSI, immune cell infiltration, and TIDE. We also developed a PPI network for topological analysis of the network, identifying hub genes as those having a degree greater than IFN-γ levels. Result: IFN-γ was differentially expressed and predicted different survival statuses in a majority of tumor types in TCGA. Additionally, IFN-γ expression was strongly linked to factors like infiltration of T cells, immune checkpoints, immune-activating genes, immunosuppressive genes, chemokines, and chemokine receptors, as well as tumor purity, functional statuses, and prognostic value. Also, prognosis, CNV, and treatment response were all substantially correlated with IFN-γ-related gene expression. Particularly, the IFN-γ-related gene STAT1 exhibited the greatest percentage of SNVs and the largest percentage of SNPs in UCEC. Elevated expression levels of IFN-γ-related genes were found in a wide variety of tumor types, and this was shown to be positively linked to drug sensitivity for 20 different types of drugs. Conclusion: IFN-γ is a good indicator of response to tumor immunotherapy and is likely to limit tumor progression, offering a novel approach for immunotherapy's future development.


Subject(s)
Interferon-gamma , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/therapy , Cytokines , Computational Biology , Immunotherapy
8.
BMC Cancer ; 23(1): 681, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37474893

ABSTRACT

INTRODUCTION: Endoscopic ultrasound (EUS) may play a role in evaluating treatment response after definitive chemoradiation therapy (dCRT) for esophageal squamous cell carcinoma (ESCC). This study explored the prognostic markers of EUS with biopsies and developed two nomograms for survival prediction. METHODS: A total of 821 patients newly diagnosed with ESCC between January 2015 and December 2019 were reviewed. We investigated the prognostic value of the changes in tumor imaging characteristics and histopathological markers by an interim response evaluation, including presence of stenosis, ulceration, tumor length, tumor thickness, lumen involvement, and tumor remission. Independent prognostic factors of progression-free survival (PFS) and overall survival (OS) were determined using Cox regression analysis and further selected to build two nomogram models for survival prediction. The receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were used to respectively assess its discriminatory capacity, predictive accuracy, and clinical usefulness. RESULTS: A total of 155 patients were enrolled in this study and divided into the training (109 cases) and testing (46 cases) cohorts. Tumor length, residual tumor thickness, reduction in tumor thickness, lumen involvement, and excellent remission (ER) of spatial luminal involvement in ESCC (ER/SLI) differed significantly between responders and non-responders. For patients undergoing dCRT, tumor stage (P = 0.001, 0.002), tumor length (P = 0.013, 0.008), > 0.36 reduction in tumor thickness (P = 0.004, 0.004) and ER/SLI (P = 0.041, 0.031) were independent prognostic markers for both PFS and OS. Time-dependent ROC curves, calibration curves, and DCA indicated that the predicted survival rates of our two established nomogram models were highly accurate. CONCLUSION: Our nomogram showed high accuracy in predicting PFS and OS for ESCC after dCRT. External validation and complementation of other biomarkers are needed in further studies.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/diagnostic imaging , Esophageal Squamous Cell Carcinoma/therapy , Prognosis , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/therapy , Nomograms , Biopsy
9.
Insect Sci ; 30(6): 1701-1712, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37147785

ABSTRACT

Inherited bacterial symbionts are very common in arthropods, but infection frequency can vary widely among populations. Experiments and interpopulation comparisons suggest that host genetic background might be important in explaining this variation. Our extensive field investigation showed that the infection pattern of the facultative symbiont Cardinium was heterogeneous across geographical populations of the invasive whitefly Bemisia tabaci Mediterranean (MED) in China, with genetic nuclear differences evident in 2 of the populations: 1 with a low infection rate (SD line) and 1 with a high infection rate (HaN line). However, whether the heterogeneous frequency of Cardinium is associated with the host genetic background remains poorly understood. Here, we compared the fitness of the Cardinium-infected and uninfected sublines with similar nuclear genetic backgrounds from SD and HaN lines, respectively, and further determine whether host extranuclear or nuclear genotype influenced the Cardinium-host phenotype by performing 2 new introgression series of 6 generations between SD and HaN lines (i.e., Cardinium-infected females of SD were backcrossed with uninfected males of HaN, and vice versa). The results showed that Cardinium provides marginal fitness benefits in the SD line, whereas Cardinium provides strong fitness benefits in the HaN line. Further, both Cardinium and the Cardinium-host nuclear interaction influence the fecundity and pre-adult survival rate of B. tabaci, whereas the extranuclear genotype does not. In conclusion, our results provide evidence that Cardinium-mediated fitness effects were closely associated with the host genetic background, which provides a fundamental basis for understanding the mechanism underlying the heterogeneous distribution of Cardinium in B. tabaci MED populations across China.


Subject(s)
Hemiptera , Rickettsia , Male , Female , Animals , Hemiptera/genetics , Hemiptera/microbiology , Symbiosis , Bacteroidetes , Fertility/genetics
10.
Bioconjug Chem ; 34(6): 983-987, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37184979

ABSTRACT

Histones catalyze the DNA strand incision at apurinic/apyrimidinic (AP) sites accompanied by formation of reversible but long-lived DNA-protein cross-links (DPCs) at 3'-DNA termini within single-strand breaks. These DPCs need to be removed because 3'-hydroxyl is required for gap-filling DNA repair synthesis but are challenging to study because of their reversible nature. Here we report a chemical approach to synthesize stable and site-specific 3'-histone-DPCs and their repair by three nucleases, human AP endonuclease 1, tyrosyl-DNA phosphodiesterase 1, and three-prime repair exonuclease 1. Our method employs oxime ligation to install an alkyne to 3'-DNA terminus, genetic incorporation of an azidohomoalanine to histone H4 at a defined position, and click reaction to conjugate DNA to H4 site-specifically. Using these model DPC substrates, we demonstrated that the DPC repair efficiency is highly affected by the local protein environment, and prior DPC proteolysis facilitates the repair.


Subject(s)
DNA Repair , Histones , Humans , Histones/metabolism , DNA/metabolism , DNA Damage
11.
DNA Repair (Amst) ; 126: 103501, 2023 06.
Article in English | MEDLINE | ID: mdl-37075541

ABSTRACT

Saccharomyces cerevisiae apurinic/apyrimidinic (AP) endonuclease 1 (yApn1) is a key player of the base excision repair pathway. This multifunctional enzyme is an AP endonuclease, 3'-5' exonuclease, 3'-phosphodiesterase, and participates in nucleotide incision repair. To the best of our knowledge, the known substrates of yApn1 are small DNA lesions such as AP sites and 3'-phospho-α,ß-unsaturated aldehyde (3'-PUA). Here, we wish to report in vitro findings that yApn1 repairs bulky DNA-peptide cross-links (DpCs) and DNA-protein cross-links (DPCs) arising from AP sites and 3'-PUA. We chemically synthesized stable and linkage-defined DpCs and DPCs by oxime ligation and reductive amination, respectively. Our steady-state kinetic data showed that yApn1 repairs a 10-mer peptide-conjugated AP site and 3'-PUA with comparable efficiencies to that of processing the unconjugated lesions. We demonstrated that yApn1 is the predominant enzyme that incises AP-DpC in yeast cell extracts. We also demonstrated that yApn1 incises AP-DPCs in a DPC size-dependent manner, and prior DPC proteolysis by trypsin facilitates the repair. We further found that yApn1 removes 3'-PUA-histone DPCs with moderate efficiencies. Together, our results uncovered a novel role of yApn1 in DPC repair, and support the emerging model that proteolysis is required for efficient DPC repair.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA Repair , DNA/metabolism , DNA Damage , Endonucleases/metabolism , Peptides
12.
Biochemistry ; 62(10): 1527-1530, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37094109

ABSTRACT

Poly [ADP-ribose] polymerase 1 (PARP1) is a ubiquitous nuclear enzyme that plays multifaceted roles in the cellular response to DNA damage. Previous studies demonstrated that PARP1 incises the most frequently formed DNA lesion, the apurinic/apyrimidinic (AP) site, and in the process is trapped as a DNA-PARP1 cross-link at the 3'-terminus. The covalent linkage was proposed to be composed of a secondary amine resulting from formal reductive amination of an initially formed incision product. PARP1 cysteine residues were proposed to reduce the initially formed Schiff base. Here, we report evidence to support a different mechanism in which DNA-PARP1 cross-links result from cysteine addition to incised AP sites.


Subject(s)
Cysteine , DNA Repair , Cysteine/genetics , Amination , DNA-(Apurinic or Apyrimidinic Site) Lyase/chemistry , Poly (ADP-Ribose) Polymerase-1/metabolism , DNA Damage , DNA/chemistry
13.
J Immunother Cancer ; 11(4)2023 04.
Article in English | MEDLINE | ID: mdl-37094986

ABSTRACT

BACKGROUND: Tumor-associated macrophages are mainly polarized into the M2 phenotype, remodeling the tumor microenvironment and promoting tumor progression by secreting various cytokines. METHODS: Tissue microarray consisting of prostate cancer (PCa), normal prostate, and lymph node metastatic samples from patients with PCa were stained with Yin Yang 1 (YY1) and CD163. Transgenic mice overexpressing YY1 were constructed to observe PCa tumorigenesis. Furthermore, in vivo and in vitro experiments, including CRISPR-Cas9 knock-out, RNA sequencing, chromatin immunoprecipitation (ChIP) sequencing, and liquid-liquid phase separation (LLPS) assays, were performed to investigate the role and mechanism of YY1 in M2 macrophages and PCa tumor microenvironment. RESULTS: YY1 was highly expressed in M2 macrophages in PCa and was associated with poorer clinical outcomes. The proportion of tumor-infiltrated M2 macrophages increased in transgenic mice overexpressing YY1. In contrast, the proliferation and activity of anti-tumoral T lymphocytes were suppressed. Treatment targeting YY1 on M2 macrophages using an M2-targeting peptide-modified liposome carrier suppressed PCa cell lung metastasis and generated synergistic anti-tumoral effects with PD-1 blockade. IL-4/STAT6 pathway regulated YY1, and YY1 increased the macrophage-induced PCa progression by upregulating IL-6. Furthermore, by conducting H3K27ac-ChIP-seq in M2 macrophages and THP-1, we found that thousands of enhancers were gained during M2 macrophage polarization, and these M2-specific enhancers were enriched in YY1 ChIP-seq signals. In addition, an M2-specific IL-6 enhancer upregulated IL-6 expression through long-range chromatin interaction with IL-6 promoter in M2 macrophages. During M2 macrophage polarization, YY1 formed an LLPS, in which p300, p65, and CEBPB acted as transcriptional cofactors. CONCLUSIONS: Phase separation of the YY1 complex in M2 macrophages upregulated IL-6 by promoting IL-6 enhancer-promoter interactions, thereby increasing PCa progression.


Subject(s)
Interleukin-6 , Prostatic Neoplasms , Humans , Male , Mice , Animals , Interleukin-6/metabolism , Prostate/metabolism , Prostatic Neoplasms/pathology , Macrophages/metabolism , Mice, Transgenic , Tumor Microenvironment , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism
14.
Curr Top Med Chem ; 23(17): 1606-1623, 2023.
Article in English | MEDLINE | ID: mdl-36999429

ABSTRACT

Aquaphotomics, as a new discipline is a powerful tool for exploring the relationship between the structure of water and the function of matter by analyzing the interaction between water and light of various frequencies. However, chemometric tools, especially the Water Absorbance Spectral Pattern (WASP) determinations, are essential in this kind of data mining. In this review, different state-of-the-art chemometrics methods were introduced to determine the WASP of aqueous systems. We elucidate the methods used for identifying activated water bands in three aspects, namely: 1) improving spectral resolution; the complexity of water species in aqueous systems leads to a serious overlap of NIR spectral signals, therefore, we need to obtain reliable information hidden in spectra, 2) extracting spectral features; sometimes, certain spectral information cannot be revealed by simple data processing, it is necessary to extract deep data information, 3) overlapping peak separation; since the spectral signal is produced by multiple factors, overlapping peak separation can be used to facilitate the extraction of spectral components. The combined use of various methods can characterize the changes of different water species in the system with disturbance and can determine the WASP. WASPs of research systems vary from each other, and it is visually displayed in the form of the aquagram. As a new omics family member, aquaphotomics could be applied as a holistic marker in multidisciplinary fields.


Subject(s)
Chemometrics , Humans , Water/chemistry , Chemometrics/methods , Photochemistry/methods
15.
J Leukoc Biol ; 113(1): 11-17, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36822161

ABSTRACT

Our previous phase Ib trial (NCT03222440) showed that radiotherapy plus the anti-PD-1 antibody camrelizumab is a safe and feasible first-line therapy for locally advanced esophageal squamous cell carcinoma. In this study, we divided peripheral CD8 T-cell differentiation subsets into 4 subpopulations (naive T cells, central memory T cells, effector memory T cells, and CD45RA+ effector memory T cells). We then investigated the influence of radiotherapy plus camrelizumab therapy on the proportions of the 4 subsets and their PD-1, TIGIT, and CTLA-4 expression as well as their proliferative activity and compared the effects with those of concurrent chemoradiotherapy. Nineteen and 15 patients with esophageal squamous cell carcinoma who received radiotherapy plus camrelizumab therapy and concurrent chemoradiotherapy, respectively, were enrolled in this study. We isolated peripheral blood mononuclear cells from these patients before treatment and longitudinally after the delivery of 40 Gy radiotherapy. Flow cytometry was conducted to detect peripheral CD8 T-cell subsets and PD-1, TIGIT, CTLA-4, and Ki67 expression levels in patients with esophageal squamous cell carcinoma. We found that radiotherapy plus camrelizumab therapy did not change the proportions of the 4 subsets or the expression of CTLA-4, but this therapy decreased PD-1 expression by the 4 subsets and TIGIT expression by effector memory T cells, as well as significantly enhanced the proliferative activity of CD8 T cells, whereas concurrent chemoradiotherapy produced different effects. In addition, we further identified peripheral biomarkers that potentially predict the outcome of radiotherapy plus camrelizumab therapy.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , CTLA-4 Antigen/metabolism , Leukocytes, Mononuclear/metabolism , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocyte Subsets , CD8-Positive T-Lymphocytes , Cell Differentiation , Receptors, Immunologic/metabolism
16.
Insect Sci ; 30(3): 844-856, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36271685

ABSTRACT

The non-consumptive effects of predator-induced stress can influence a variety of life-history traits. Many previous studies focused only on short-term effects such as development and reproductive rates. Recent studies have showed that long-term predation stress (given during the whole life of the prey) and short-term predation stress (provided during the immature stage of the prey) could generate completely opposite results: the former could decrease lifespan, whereas the later could increase lifespan. However, it is still unclear whether the advantage is because of the short duration of exposure or the early stage of life during which exposure was exerted. Thus, in this study, the prey (Tyrophagus putrescentiae) was exposed to predation stress from the predator (Neoseiulus cucumeris) during different life stages (larva, protonymph, tritonymph, first 5 d of oviposition, the full lifespan or none of the above). The results showed that the predation stress supplied during larval and protonymphal stage delayed development, reduced fecundity and prolonged lifespan of the prey, while the stress given during tritonymphal stage only reduced lifespan slightly and the stress given during the first 5 d of oviposition did not change lifespan but reduced fecundity. This study indicated that the effects of predation stress are dependent on prey life stage and the predation stress experienced in the early life stages is important to lifespan modulation.


Subject(s)
Mites , Female , Animals , Predatory Behavior , Longevity , Reproduction , Larva , Food Chain
17.
Biogerontology ; 24(1): 67-79, 2023 02.
Article in English | MEDLINE | ID: mdl-36085209

ABSTRACT

The early-life experience is important in modulating the late-life performance of individuals. It has been predicted that there were trade-offs between early-life fitness and late-life success. Most of the studies on senescence have focused on the trade-offs between the reproduction and lifespan, and the influences of diet, mating, and other factors. Because the negative, non-consumptive effects of predators could also modulate the behaviour and underlying mechanisms of the prey, this study aimed to examine the different effects of predator-induced stress experienced in the early life compared with later life of the prey. The prey (Tyrophagus putrescentiae) was exposed to predation stress from the predator (Neoseiulus cucumeris) during different periods of its life (immature, oviposition period, and post-oviposition period). The results showed that the predation stress experienced during immature stages delayed development by 7.3% and prolonged lifespan by 9.7%, while predation stress experienced in the adult stage (both oviposition and post-oviposition periods) decreased lifespans of T. putrescentiae (by 24.8% and 28.7%, respectively). Predation stress experienced during immature stages also reduced female fecundity by 7.3%, whereas that experienced during the oviposition period reduced fecundity of the prey by 50.7%. This study demonstrated for the first time lifespan extension by exposure to predation stress when young and highlighted the importance of early-life experience to aging and lifespan.


Subject(s)
Mites , Predatory Behavior , Animals , Female , Longevity , Mites/physiology , Oviposition/physiology , Predatory Behavior/physiology
18.
Front Immunol ; 13: 1060695, 2022.
Article in English | MEDLINE | ID: mdl-36479110

ABSTRACT

Objective: The systematic immune status of cancer patients undergoing immunotherapy is little known. We prospectively identified the function and differentiation traits of peripheral CD8+ T cells based on our phase 1b clinical trial (NCT03222440) of radiotherapy combined with camrelizumab in patients with locally advanced esophageal squamous cell carcinoma (ESCC) and compared it with concurrent chemoradiotherapy (CCRT). Methods: 19 and 18 patients were included in the cohort of radiotherapy plus camrelizumab and cohort of CCRT treatment. By using flow cytometry, we evaluated the expression levels of PD-1, Eomes, T-bet and IFN-γ (function), CD38 and HLA-DR (activation), and differentiation subsets classified according to the expression levels of CD45RA and CD62L in peripheral CD8+ T cells before and during treatment. Results: Effective binding of anti-PD-1 antibody camrelizumab with PD-1 on CD8+ T cells was detected during treatment. Both two treatments elevated the expression levels of activation molecules CD38 and HLA-DR on CD8+ T cells. PD-1+CD8+ T cells had more activation features than PD-1-CD8+ T cells in two groups and the treatments did not alter these differences. The two treatments activated both PD-1+ and PD-1- CD8+ T cells. PD-1+CD8+ T cells had less Naïve and TEMRA but more Tcm and Tem than PD-1-CD8+ T cells in two groups and both two treatments changed the ratio of memory T cells in PD-1+ and PD-1- cells. RT plus camrelizumab treatment reduced Naïve T cells and TEMRA subsets both in PD-1+ and PD-1- CD8+ T cells while elevated Tcm subset in PD-1+CD8+ T cells and Tem subset in PD-1-CD8+ T cells. CCRT elevated Tcm subset and reduced TEMRA subset in PD-1-CD8+ T cells while did not change any subset in PD-1+CD8+ T cells. Furthermore, patients undergoing radiotherapy plus immunotherapy were found to obtain better prognosis than those receiving CCRT. Conclusions: This study identified the dynamic changes of systematic immune status of patients undergoing treatment. The two treatments had similar activation effects on peripheral CD8+ T cells with different PD-1 properties but had different effects on their differentiation status. These results provided potential clues to the reasons underlying the difference in prognosis of the two treatments.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , CD8-Positive T-Lymphocytes , Esophageal Neoplasms/therapy , Cell Differentiation , HLA-DR Antigens
19.
Front Immunol ; 13: 994828, 2022.
Article in English | MEDLINE | ID: mdl-36405728

ABSTRACT

Introduction: The migrasome is a newly discovered organelle that resembles extracellular vesicles in structure. However, the function of the migrasome in tumors, particularly in relation to tumor immunity and tumor microenvironment, is unclear. Methods: Gene expression data, copy number variation raw data, and methylation data of 33 cancer types were downloaded from The Cancer Genome Atlas database. Immunohistochemistry (IHC) based on 114 case of colorectal cancer was used to validate the expression of the migrasome hub-gene. We analyzed the expression, prognosis, genetic variation, and drug sensitivity profiles of migrasome-related genes (MRGs) in pan-cancer datasets. A migrasome score was constructed based on gene set enrichment analysis, and the correlation of migrasomes with the tumor microenvironment was assessed. The CancerSEA was used to perform a single-cell level functional analysis of the migrasome. Additionally, we also analyzed the correlation between migrasomes and tumor mutational burden (TMB), microsatellite instability (MSI), and tumor immune dysfunction and exclusion scores. Single-cell transcriptome sequencing (scRNA-seq) data was used to assess the activation state of migrasomes in the tumor microenvironment. Results: PIGK expression was significantly up-regulated in 22 of 33 tumors, and high expression of migrasome was estimated to have contributed to poor prognosis. Missense mutations are the most common type of mutation in MRGs. We identified piperlongumine as a potential drug targeting migrasomes. The migrasome score was significantly and positively correlated with the tumor immunity score and the stroma score. In most tumors, the abundance of macrophages in the tumor microenvironment was significantly and positively correlated with the migrasome score. Additionally, the migrasome scores were significantly correlated with the immune checkpoint genes in pan-cancer as well as immune checkpoint therapy-related markers including TMB and MSI. According to scRNA-seq analysis, migrasome differed significantly among cells of the tumor microenvironment. IHC confirmed low expression of ITGA5 and PIGK in colorectal cancer. Discussion: We performed the first pan-cancer analysis of migrasomes and discovered that they play an important role in tumor development and immune escape. Our study provides new insights into the role of migrasomes in tumor prognosis and immunotherapy.


Subject(s)
Colorectal Neoplasms , DNA Copy Number Variations , Humans , Organelles , Immunotherapy , Microsatellite Instability , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Colorectal Neoplasms/metabolism , Tumor Microenvironment/genetics
20.
J Neural Eng ; 19(5)2022 11 02.
Article in English | MEDLINE | ID: mdl-36228578

ABSTRACT

Objective.Among the existing active brain-computer interfaces (BCI), the motor imagination (MI) is widely used. To operate the MI BCI effectively, subjects need to carry out trainings on corresponding imagining tasks. Here, we studied how to reduce the discomfort and fatigue of active BCI imaginary tasks and the inability to concentrate on them while improving the accuracy.Approach.This paper proposes a hybrid BCI composed of MI and pronunciation imagination (PI). The electroencephalogram signals of ten subjects are recognized by the adaptive Riemannian distance classification and the improved frequency selective filter-bank Common Spatial Pattern recognition.Main results.The results show that under the new paradigm with the combination of MI and PI, the recognition accuracy is higher than the MI alone. The highest recognition rate of the proposed hybrid system can reach more than 90%. Furthermore, through the subjects' scoring results of the operation difficulty, it is concluded that the designed hybrid paradigm is more operable than the traditional BCI paradigm.Significance.The separable tasks in the active BCI are limited and the accuracy needs to be improved. The new hybrid paradigm proposed by us improves the accuracy and operability of the active BCI system, providing a new possibility for the research direction of the active BCI.


Subject(s)
Brain-Computer Interfaces , Humans , Imagination , Electroencephalography/methods , Imagery, Psychotherapy , Computers , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL
...